Conformational Behaviour of Medium-sized Rings. Part I. 5,6,11,12-Tetrahydrodibenzo[a,e]cyclo-octene † (1,2,5,6-Dibenzocyclo-octa-1,5-diene t) and Heterocyclic Analogues

By R. Crossley, A. P. Downing, M. Nógrádi, A. Braga de Oliveira, W. D. Ollis," and I. O. Sutherland, Department of Chemistry, The University, Sheffield S3 7HF

The temperature dependence of the n.m.r. spectra of the eight-membered ring compound 5,6,11,12-tetrahydro-dibenzo[a,e]cyclo-octene (1) and various aza- and thia-analogues [(7a-c), (8a-e), (9a-f), and (10b)] has been interpreted in terms of the interconversion of chair- and boat-like conformations. The values of the free energies of activation for these conformational changes are discussed in terms of probable transition state geometries and calculated strain energies.

The conformational behaviour of medium-sized rings is generally complex, ${ }^{1,2}$ and experimental studies have been difficult to interpret because of the large number of available conformations of comparable energy. The situation in unsaturated ring systems is less complex ${ }^{1,3}$ because of the torsional rigidity of double bonds, but in spite of this simplifying factor little definitive work has been published concerning the conformations adopted in solution by medium-sized unsaturated ring systems. In this paper we discuss the conformational behaviour of 5,6,11,12-tetrahydrodibenzo $[a, e]$ cyclo-octene (1) and a number of heterocyclic analogues.
It was pointed out some years ago ${ }^{3}$ that the dibenzo-cyclo-octene derivative (1) might be expected to adopt either a chair-like conformation (2) with $C_{2 h}$ symmetry or one of the family of boat-like conformations derived from the $C_{2 v}$ conformations (3) by a process involving rotation about the single bonds of the eight-membered ring, the boat conformation (3) and the D_{2} twist-boat conformation (4) being considered as probable minimum energy points in this rotational process. The recognition that the hydrocarbon (1) in the crystalline state possesses a centre
\dagger Throughout this paper we have used the nomenclature recommended by I.U.P.A.C. rule A-21.4 (also used by Chem. Abs.) rather than the alternative rule A-23.5 (' Nomenclature of Organic Chemistry,' Butterworths, London, 1966, 2nd edn., pp. 25 and 30).
${ }^{1}$ J. Dale, Angew. Chem. Internat. Edn., 1966, 5, 1000; J. D. Dunitz, ' Perspectives in Structural Chemistry,' vol. 2, ed. J. D. Dunitz and J. A. Ibers, Wiley, New York, 1968.
of symmetry ${ }^{3}$ was consistent with a crystal structure composed of molecules in the chair conformation (2).

A number of reports of the n.m.r. spectra of derivatives of compound (1) are relevant to its conformational behaviour. The dicyano-derivative (5) is believed on chemical grounds to have the indicated trans-stereochemistry and its n.m.r. spectrum shows ${ }^{4}$ at -40° an AB system ($J_{\mathrm{AB}} 11 \mathrm{~Hz}$) for the C-5 and C-6 proton signals which coalesces to a singlet at higher temperatures. The observed coupling constant is consistent with a torsion angle (ω) of either $c a .0$ or $c a .180^{\circ}$ between the $\mathrm{C}(5)-\mathrm{H}$ and $\mathrm{C}(6)-\mathrm{H}$ bonds, which could mean that the molecule adopts a boat-like conformation similar to the FB conformation (see later) with $\omega 180^{\circ}$. The n.m.r. spectra of two tetrasubstituted derivatives of the hydrocarbon (1) also showed ${ }^{5}$ coupling of similar magnitude between
${ }^{2}$ (a) J. B. Hendrickson, J. Amer. Chem. Soc., 1961, 83, 4537; 1962, 84, 3355; 1964, 86, 4854; 1967, 89, 7036, 7043, 7047; (b) K. B. Wiberg, ibid., 1965, 87, 1070; (c) N. L. Allinger, J. A. Hirsch, M. A. Miller, I. Tyminski, and F. A. Van-Catledge, ibid., 1968, 90, 1199; (d) M. Bixon and S. Lifson, Tetrahedron. 1967, 23, 769; (e) C. Altona and M. A. Sunaralingham, ibid., 1970, 26, 925 ; (f) N. L. Allinger, M. T. Tribble, M. A. Miller, and D. H. Wertz, J. Amer. Chem. Soc., 1971, 93, 1637; (g) R. H. Boyd, J. Chem. Phys., 1968, 49, 2574.
${ }_{3}$ W. Baker, R. Banks, D. R. Lyon, and F. G. Mann, J. Chem. Soc., 1945, 27.
${ }^{4}$ F.-H. Marquardt, Tetrahedron Letters, 1967, 4989.
${ }^{5}$ A. T. Blomquist, Y. C. Meinwald, C. G. Bottomley, and P. W. Martin, Tetrahedron Letters, 1960, No. 24, 13; M. P. Cava, R. Pohlak, B. W. Erickson, J. C. Rose, and G. Fraenkel, Tetrahedron, 1962, 18, 1005.
vicinal trans-protons of the eight-membered ring, which was considered to be consistent with a boat-like conformation. The n.m.r. spectrum of 11,12-dihydro-5,5dimethyldibenzo $[a, e]$ cyclo-octen- $6(5 H)$-one (6) shows ${ }^{6}$

(1)

(3)

(4)

(5)

(6)
two C-methyl signals of equal intensity below 66°, indicating slow conformational inversion on the n.m.r. time scale. However, this result does not define the ground-state conformation of compound (6), which

$a ; R=N A c$
$a ; R^{1}=N A c, R^{2}=H$
b; $R=N B z$
$b ; R^{1}=N B z, R^{2}=H$
c; $\mathrm{R}=\mathrm{N} \cdot \mathrm{SO}_{2} \cdot \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-\rho$
$d ; R^{1}=S, R^{2}=M e$
$\mathrm{d} ; \mathrm{R}=\mathrm{N} \cdot \mathrm{CH}_{2} \mathrm{Ph}$
e: $R^{1}=\mathrm{SO}_{2}, R^{2}=\mathrm{Me}$
$f ; R^{1}=N H, R^{2}=H$ $g ; R^{1}=N \cdot \mathrm{CH}_{2} \mathrm{Ph}, \mathrm{R}^{2}=\mathrm{H}$

(10)
$a: R^{1}=N A c, R^{2}=M e$
$a: R=H$
b; $R^{1} \square N B z, R^{2}=M e$
b; $R=\mathrm{CH}_{2} \mathrm{Ph}$
c; $R^{\prime}=N \cdot \mathrm{SO}_{2} \cdot \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-\rho, \mathrm{R}^{2}=\mathrm{Me}$
$d ; R^{\prime}=N \cdot N O, R^{2}=M e$
e; $R^{1}=S, R^{2}=H$
$f ; R^{1}=\mathrm{SO}_{2}, R^{2}=\mathrm{H}$
could be of either the chair or the boat type, or even a rapidly equilibrating mixture of more than one conformational type.

Clearly knowledge regarding the conformational
behaviour of ' $6,8,6$-systems '[cf. (1)] is incomplete; we now report a study of the temperature dependence of the n.m.r. spectra of the hydrocarbon (l) and a number of its thia- and aza-analogues. The compounds examined fall into three main groups, all of which could be synthesised by standard procedures (Experimental section). The first group consisted of the tetrahydrodibenz $[b, f]$ azocines ($7 \mathrm{a}-\mathrm{c}$ and e) ; the second of the tetrahydrodibenzo $[b, f][1,4]$ diazocines ($8 \mathrm{a}-\mathrm{c}, \mathrm{f}$, and g) and the tetrahydrodibenzo $[b, f][1,4]$ dithiocin derivatives (8 d and e) ; and the third of the tetrahydrodibenzo $[b, f][1,5]$ diazocine derivatives ($9 \mathrm{a}-\mathrm{d}$) and the tetrahydrodibenzo $[b, f][1,5]$ dithiocin derivatives (9 e and f).

EXPERIMENTAL

5-Benzyl-11,12-dihydrodibenz[b, f$]$ azocin-6(5H)-one (10b). -ll,12-Dihydrodibenz[b,f]azocin-6(5H)-one ${ }^{7}$ (10a) (5 g) and sodium hydride (0.6 g) in benzene were stirred and heated under reflux (30 min). Benzyl chloride (3.4 g) was added and heating was continued for a further 20 h . The mixture was treated with water (20 ml) and the benzene layer separated, dried, and evaporated. The oily residue was purified by chromatography on silica gel, with chloroform as eluant, giving the lactam (10 b) ($3 \cdot 3 \mathrm{~g}, 47 \%$), m.p. $131-132^{\circ}$ (from n-hexane-benzene) [Found: C, $84 \cdot 1$; H , $6 \cdot 4 ; \mathrm{N}, 4 \cdot 3 \% ; M$ (mass spectrum), $313 \cdot 1465 . \mathrm{C}_{22} \mathrm{H}_{19} \mathrm{NO}$ requires $\mathrm{C}, 84 \cdot 3 ; \mathrm{H}, 6 \cdot 1 ; \mathrm{N}, 4.5 \%$; $M, 313 \cdot 1467]$; $\nu_{\text {max }}$ $1640 \mathrm{~cm}^{-1}$.

5-Benzyl-5,6,11,12-tetrahydrodibenz[b,f]azocine (7d).—The N-benzyl-lactam (10b) (1.0 g) and lithium aluminium hydride $(0 \cdot 3 \mathrm{~g})$ in dry ether (60 ml) were heated under reflux (12 h). Excess of hydride was destroyed by the addition of water (10 ml) and aqueous sodium hydroxide ($10 \mathrm{~N} ; 30 \mathrm{ml}$), and the ethereal layer was separated and combined with an ethereal extract ($3 \times 50 \mathrm{ml}$) of the aqueous layer. The combined extracts were dried and evaporated giving an oil. This was fractionated by chromatography on silica gel followed by short-path distillation at 130° at 0.005 mmHg yielding the azocine (7 d) as an oil ($0.78 \mathrm{~g}, 82 \%$) (Found: C, $87 \cdot 9 ; \mathrm{H}, 7 \cdot 0 ; \mathrm{N}, 4 \cdot 7 . \quad \mathrm{C}_{22} \mathrm{H}_{21} \mathrm{~N}$ requires $\mathrm{C}, 88 \cdot 3 ; \mathrm{H}, 7 \cdot 1$; $\mathrm{N}, 4 \cdot 7 \%$); $\nu_{\text {max }} 1600$ and $1495 \mathrm{~cm}^{-1}$.

5 -Acetyl- $5,6,11,12$-tetrahydrodibenz $[\mathrm{b}, \mathrm{f}]$ azocine (7a).-The tetrahydrodibenzazocine ${ }^{7}(7 \mathrm{e})(\mathrm{l} \cdot 0 \mathrm{~g})$ and acetic anhydride (5 ml) in anhydrous pyridine were set aside (12 h) at room temperature. The solution was poured into water (50 ml), stirred for 30 min , and extracted with chloroform (2×30 $\mathrm{ml})$. The extract was washed with dilute hydrochloric acid $(30 \mathrm{ml})$ and aqueous sodium hydrogen carbonate $(30 \mathrm{ml})$ and dried. Evaporation gave a pale yellow oil which was purified by t.l.c., followed by crystallisation from n-hexane, giving the N -acetylazocine (7a), m.p. $96-99^{\circ}(0.67 \mathrm{~g}, 58 \%)$ [Found: C, $81 \cdot 4 ;$ H, $6.9 ; \mathrm{N}, 5 \cdot 3 \%$; M (mass spectrum), $251 \cdot 1309$. $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{NO}$ requires $\mathrm{C}, 81 \cdot 2 ; \mathrm{H}, 6 \cdot 8 ; \mathrm{N}, 5 \cdot 6 \%$; $M, 251 \cdot 1310] ; \nu_{\max } 1700$ and $1690 \mathrm{~cm}^{-1}$.

5-Benzoyl-5,6,11,12-tetrahydrodibenz[b,f]azocine (7b).This compound was prepared as for the acetyl compound (7a) from the tetrahydrodibenzazocine (7e) (0.5 g) and benzoyl chloride (0.334 g). Purification by t.l.c. gave the N -benzoylazocine (7 b), m.p. $110 — 113^{\circ}(0.25 \mathrm{~g}, 33 \%$) [Found: C, $84 \cdot 1$; $\mathrm{H}, 6 \cdot 2 ; \mathrm{N}, 4 \cdot 6 \% ; M$ (mass spectrum), $313 \cdot 1468 . \quad \mathrm{C}_{22} \mathrm{H}_{19} \mathrm{NO}$

[^0]requires C, 84.3 ; H, 6.1; N, 4.5%; $M, 313.1467]$; $\nu_{\text {max. }}$ $1630 \mathrm{~cm}^{-1}$.
5,6,11,12-Tetrahydro-5-p-tolylsulphonyldibenz[b,f]azocine (7c). -This compound was prepared as for the acetyl compound (7a). The tetrahydrodibenzazocine (7e) (0.3 g) and toluene- p-sulphonyl chloride (0.5 g) in anhydrous pyridine were heated under reflux (30 min). The product $(7 \mathrm{c}$) crystallised from aqueous ethanol as needles $(0.46 \mathrm{~g}, 88 \%$ m'p. 152-153 ${ }^{\circ}$ [Found: C, 72.9 ; H, 5.9 ; N, 3.7 ; S, $8 \cdot 8 \% ; M$ (mass spectrum), $363 \cdot 1298 . \quad \mathrm{C}_{22} \mathrm{H}_{21} \mathrm{NO}_{2} \mathrm{~S}$ requires C, 72.7 ; H, 5.8 ; N, 3.9 ; S, 8.8%; $M, 363.1293]$; $\nu_{\text {max. }}$ $1600 \mathrm{~cm}^{-1}$.
5,6,11,12-Tetrahydro-5,12-bis-p-tolylsulphonyldibenzo[b,f]$[1,4]$ diazocine (8 c). -This compound, prepared by the published procedure, ${ }^{8}$ crystallised from ethanol; m.p. 179° (lit., ${ }^{8 b} 178^{\circ}$) [Found: C, $64 \cdot 8 ; \mathrm{H}, 5 \cdot 0 ; \mathrm{N}, 5 \cdot 6 ; \mathrm{S}, 12.5 \%$; M (mass spectrum), 518. Calc. for $\mathrm{C}_{28} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}_{2}$: C, 64.9; $\mathrm{H}, 5 \cdot 0 ; \mathrm{N}, 5 \cdot 4 ; \mathrm{S}, 12 \cdot 35 \%$; $M, 518]$.
5,6,11,12-Tetrahydrodibenzo[b, f$][1,4]$ diazocine (8f).-The bis- p-tolylsulphonyldiazocine (8c) (9 g) was dissolved in n butanol, and metallic sodium (15 g) was added in small portions. After the sodium had all reacted, the cooled mixture was poured into water (200 ml) and the n-butanol layer was separated and evaporated. The residual oil was extracted into dilute hydrochloric acid, the acidic solution was neutralised with aqueous sodium carbonate, and the product was extracted into chloroform. The extract was dried and evaporated, and the residual solid crystallised from ethanol giving the diazocine (8 f) $\left(3.0 \mathrm{~g}, 83 \%\right.$), m.p. 198° (lit., ${ }^{8 b} 198^{\circ}$) [Found: C, $79.9 ; \mathrm{H}, 6.8 ; \mathrm{N}, 13.5 \% ; M$ (mass spectrum), 210. Calc. for $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{~N}_{2}$: C, $80.0 ; \mathrm{H}, 6.7$; $\mathrm{N}, 13.3 \%$; $M, 210]$.
5,12-Diacetyl-5,6,11,12-tetrahydrodibenzo $[\mathrm{b}, \mathrm{f}][1,4]$ diazocine (8a).-The tetrahydrodiazocine (8f) (0.8 g) was treated with acetic anhydride (5 ml) and pyridine (1 ml). After the solution had been left for 17 h at room temperature, it was poured into dilute hydrochloric acid (20 ml) and the precipitate was collected, washed, dried, and crystallised from ethanol giving the NN^{\prime}-diacetyltetrahydrodiazocine (8a), m.p. $238^{\circ}(0.9 \mathrm{~g}, 81 \%)$ [Found: C, $73.4 ; \mathrm{H}, 6.2$; N, 9.3%; M (mass spectrum), 294. $\quad \mathrm{C}_{18} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2}$ requires $\mathrm{C}, 73 \cdot 5 ; \mathrm{H}$, $6.2 ; \mathrm{N}, 9.5 \% ; M, 294]$; $v_{\text {max. }} 1655 \mathrm{~cm}^{-1}$.

5,12-Dibenzoyl-5,6,11,12-tetrahydrodibenzo $[\mathrm{b}, \mathrm{f}][1,4]$ diazocine (8 b).-This was prepared as for the diacetyl derivative (8a). The tetrahydrodiazocine (8f) (0.5 g), benzoyl chloride (4 ml), and pyridine (3 ml) in benzene (30 ml) were heated under reflux (3 h) yielding the dibenzoyl derivative (8 b) $\left(0.7 \mathrm{~g}, 70 \%\right.$), m.p. 248° (from ethanol) [Found: C, $80 \cdot 6 ; \mathrm{H}, 5 \cdot 5 ; \mathrm{N}, 6.7 \% ; M$ (mass spectrum), $418 . \mathrm{C}_{28} \mathrm{H}_{22}{ }^{-}$ $\mathrm{N}_{2} \mathrm{O}_{2}$ requires C, 80.4 ; H, $\left.5 \cdot 3 ; \mathrm{N}, 6.7 \% ; M, 418\right]$; $\nu_{\max }$ $1650 \mathrm{~cm}^{-1}$.

5,12-Dibenzyl-5,6,11,12-tetrahydrodibenzo $[\mathrm{b}, \mathrm{f}][1,4]$ diazocine $(8 \mathrm{~g})$.-The $N N^{\prime}$-dibenzoyldiazocine (8 b) $(0.5 \mathrm{~g})$ was dissolved in hot dry ether (100 ml) and lithium aluminium hydride (1 g) was added. The mixture was stirred and heated under reflux (24 h), then excess of hydride was decomposed with concentrated aqueous sodium hydroxide. The ethereal layer was separated, dried, and evaporated, and the residue was crystallised from light petroleum (b.p. $60-80^{\circ}$) giving the NN^{\prime}-dibenzyldiazocine (8 g) $(0.36 \mathrm{~g}$,

8 (a) H. Stetter, Chem. Ber., 1953, 86, 161; (b) W. Schroth and B. Streckenbach, Z. Chem., 1963, 465; (c) E. Negishi and A. R. Day, J. Org. Chem., 1965, 30, 43.
${ }_{9}$ M. Borovicka, F. Kuis, J. Chromok, and M. Protiva, Coll. Czech. Chem. Comm., 1957, 32, 1745.
77%), m.p. 124° (Found: C, $85 \cdot 9 ; \mathrm{H}, 6 \cdot 8 ; \mathrm{N}, 7 \cdot \mathrm{l} . \quad \mathrm{C}_{28} \mathrm{H}_{26} \mathrm{~N}_{2}$ requires $\mathrm{C}, 86 \cdot 1 ; \mathrm{H}, 6.7 ; \mathrm{N}, 7 \cdot 2 \%)$; $\tau\left(\mathrm{CDCl}_{3}\right) 2 \cdot 60-3 \cdot 20$ $(18 \mathrm{H}, \mathrm{m}$, aromatic H$)$ and $5.58\left(8 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{CH}_{2} \mathrm{Ph}\right.$ and $2 \times \mathrm{CH}_{2} \mathrm{Ar}$).

6,11-Dihydro-2-methyldibenzo [b, f$][1,4]$ dithiocin (8d).-Toluene-3,4-dithiol (1.7 g) was dissolved in a solution of sodium hydroxide (0.9 g) in water (30 ml); $\alpha \alpha^{\prime}$-dibromo- 0 xylene ($2 \cdot 8 \mathrm{~g}$) in benzene was added and the mixture was heated under reflux (4 h). The benzene layer was separated dried, and evaporated, and the residual oil was crystallised from ether-cyclohexane giving the dithiocin (8d) $(0.4 \mathrm{~g}$, 14%), m.p. $122-127^{\circ}$ [Found: C, $69 \cdot 6$; H, $5 \cdot 7$; S, $25 \cdot 1 \%$; M (mass spectrum), 258. $\quad \mathrm{C}_{15} \mathrm{H}_{14} \mathrm{~S}_{2}$ requires $\mathrm{C}, 69 \cdot 8 ; \mathrm{H}$, $5 \cdot 5 ; \mathrm{S}, 24 \cdot 8 \% ; M, 258]$.

6,11-Dihydro-2-methyldibenzo $[\mathrm{b}, \mathrm{f}][1,4]$ dithiocin $5,5,12,12-$ Tetraoxide (8e).-The dithiocin derivative (8d) (200 mg) was heated under reflux (30 min) in acetic acid and hydrogen peroxide. The mixture was poured into water and extracted with chloroform. The chloroform solution was dried and evaporated giving the bis-sulphone (8e) m.p. 251° (from aqueous 95% ethanol) (Found: C, $55.6 ; \mathrm{H}, 4 \cdot 6$; $\mathrm{S}, 20 \cdot 1$. $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{4} \mathrm{~S}_{2}$ requires C, $55 \cdot 9 ; \mathrm{H}, 4 \cdot 35 ; \mathrm{S}, 19 \cdot 9 \%$).

6,12-Dihydrodibenzo $[b, f][1,5]$ dithiocin ${ }^{9}$ (9e), 5,6,11,12-tetrahydro-2,8-dimethyl-5,11-dinitrosodibenzo $[b, f][1,5]$ diazocine ${ }^{10}$ (9d), 5,11-diacetyl-5,6,11,12-tetrahydro-2,8-dimethyldibenzo $[b, f][1,5]$ diazocine (9 a), ${ }^{11}$ 5,11-dibenzoyl-5,6,11,12-tetrahydro-2,8-dimethyldibenzo $[b, f][1,5]$ diazocine (9b), ${ }^{11}$ and $5,6,11,12$-tetrahydro-2,8-dimethyl-5, 11 -bis- p tolylsulphonyldibenzo $[b, f][1,5]$ diazocine ${ }^{12}$ (9c) were prepared by published methods. They had spectral properties in accord with the assigned constitutions.

6,12-Dihydrodibenzo[b, f$][1,5]$ dithiocin 5,5,11,11-Tetraoxide (9f).-Peroxylauric acid ($5.0 \mathrm{~g}, 80 \%$) was added to a solution of the dithiocin derivative (9 e) ($1 \cdot 1 \mathrm{~g}$) in chloroform (40 ml). After 20 h , the solution was evaporated and the residue triturated with n-hexane giving the bis-sulphone (9f) as prisms (l.2 g), m.p. 259° (from chloroform) [Found: C, $54 \cdot 45 ; \mathrm{H}, 4 \cdot 0 ; \mathrm{S}, 20.6 \% ; M$ (mass spectrum), 308. $\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{4} \mathrm{~S}_{2}$ requires $\left.\mathrm{C}, 54 \cdot 6 ; \mathrm{H}, 3 \cdot 9 ; \mathrm{S}, 20 \cdot 8 \% ; M, 308\right]$.

Measurement of Rates of Conformational Change by N.m.r. Spectroscopy.-The n.m.r. spectra of the compounds (1), ($7 \mathrm{a}-\mathrm{c}$), ($8 \mathrm{a}-\mathrm{e}$), and $9 \mathrm{a}-\mathrm{f}$) were recorded at a number of temperatures by use of a Varian HA 100 spectrometer equipped with a variable temperature probe. Solutions were generally $5-10 \% \mathrm{w} / \mathrm{v}$ in the stated solvents. Probe temperatures were calibrated by use of ethylene glycol and methanol standards and are probably accurate to $\pm 2^{\circ}$. The relevant details of the spectra are listed in Table 1; Table 2 gives details of temperature-dependent changes. Table 2 also lists the associated activation parameters (ΔG^{\ddagger}) based upon exchange rates obtained by the comparison of observed and calculated spectra. The latter were obtained by use of FORTRAN IV programmes, which calculated n.m.r. spectra for the following situations (a)-(c) from the stated input data.
(a) A programme for a two-site exchange process with no mutual coupling based upon the appropriate line-shape equation. ${ }^{13}$

The required input parameters are the site exchange rates, k_{A} and k_{B} (where k_{A} is the rate for the site exchange $\mathrm{A} \longrightarrow \mathrm{B}$

10 M. A. Spielmann, J. Amer. Chem. Soc., 1935, 57, 584.
${ }_{11}$ F. C. Cooper and M. W. Partridge, J. Chem. Soc., 1955, 991.
${ }_{12}$ F. C. Cooper and M. W. Partridge, J. Chem. Soc., 1957, 2888.
${ }^{13}$ M. T. Rogers and J. C. Woodbrey, J. Phys. Chem., 1962,
66, 540.
and k_{B} for $\mathrm{B} \longrightarrow \mathrm{A}$ in s^{-1}), the site populations, p_{A} and p_{B} expressed as mole fractions, the chemical shifts of the two sites, ν_{A} and ν_{B} in Hz , and the two relaxation times, $t_{2 \mathrm{~A}}$ and $t_{2 \mathrm{~B}}$ in s , based upon the low temperature line-widths of the two signals. The chemical shifts v_{A} and v_{B} were regarded as variable input parameters in cases where the low temperature spectra indicated that they were temperature dependent.
(b) A programme for the exchange of nuclei between two sites A and B with equal populations and a mutual coupling constant, J. This programme was based upon the equation ${ }^{14}$ derived for this situation.

The input parameters are the single exchange rate $k \mathrm{~s}^{-1}$, the relaxation time $t_{2} \mathrm{~s}$, the site chemical shifts v_{Δ} and $v_{B} \mathrm{~Hz}$, and the coupling constant $J \mathrm{~Hz}$. The chemical shifts v_{A} and v_{B} could again be regarded, in some cases, as variable parameters.
(c) A programme for the more complex case in which nuclei are exchanged between all four sites of the two AB systems, A1 and B1 and A2 and B2.
Line-shape equations of the types used for situations (a) and (b) are not available for situation (c); in this case spectra were simulated by use of the density matrix approach developed by Kaplan, ${ }^{15}$ Alexander, ${ }^{16}$ and Johnson. ${ }^{17}$ For two $A B$ systems undergoing the exchange of nuclei between the sites illustrated in Figure 1 this method gives two sets of four simultaneous equations in the density matrix elements for the eight allowed transitions corresponding to the eight lines observed in two AB systems (Figure 2) (cf. ref. 18).

Figure 1 Site exchanges for programme of situation (c)
The first set of four simultaneous equations involves the density matrix elements $\rho_{12}{ }^{1}, \rho_{12}{ }^{2}, \rho_{13}{ }^{1}$, and $\rho_{13}{ }^{2}$. The subscripts have the usual significance and refer to spin states; the superscripts 1 and 2 refer to the two different $A B$ systems of Figure 1. Then, by considering the effects of the site exchanges shown in Figure 1 upon the basis functions, the following simultaneous equations (1)-(4) in the p 's may be obtained for 'steady-state ' conditions ($\partial \rho_{\rho_{12}}{ }^{\prime} / \partial t=0$, etc).

$$
\begin{align*}
& k_{21} \rho_{12}{ }^{2}-k_{12} \rho_{12}{ }^{1}-k_{1} \rho_{12}{ }^{1}+k_{1} \rho_{13}{ }^{1}-\rho_{12}{ }^{1} / t_{2 \mathrm{~B} 1}- \\
& 2 \pi i \rho_{12}{ }^{1}\left(\nu_{\mathrm{B}_{1}}-\nu+\frac{1}{2} J_{1}\right)+i \rho_{13}{ }^{1} \pi J_{1}+\rho_{1} i \mathrm{C}=0 \tag{l}\\
& k_{21} \rho_{13}{ }^{2}-k_{12} \rho_{13}{ }^{1}-k_{1} \rho_{13}{ }^{1}+k_{1} \rho_{12}{ }^{1}-\rho_{13}{ }^{1} / t_{2 A_{1}}- \\
& 2 \pi i \rho_{13}{ }^{1}\left(\nu_{\Lambda_{1}}-\nu+\frac{1}{2} J_{1}\right)+i \rho_{12}{ }^{1} \pi J_{1}+p_{1} i \mathrm{C}=0 \tag{2}\\
& k_{12} \rho_{12}{ }^{1}-k_{21} \rho_{12}{ }^{2}-k_{2} \rho_{12}{ }^{2}+k_{2} \rho_{13}{ }^{2}-\rho_{12}{ }^{2} / t_{2 \mathrm{~B} 2}- \\
& 2 \pi i \rho_{12}{ }^{2}\left(\nu_{\mathrm{B} 2}-\nu+\frac{1}{2} J_{2}\right)+i \rho_{13}{ }^{2} \pi J_{2}+p_{2} i \mathrm{C}=0 \tag{3}\\
& k_{12 \rho_{13}}{ }^{1}-k_{21} \rho_{13}{ }^{2}-k_{2 \rho_{13}}{ }^{2}+k_{2} \rho_{12}{ }^{2}-\rho_{13}{ }^{2} / t_{2 A_{2}}- \\
& 2 \pi i \rho_{13}{ }^{2}\left(\nu_{\Delta 2}-\nu+\frac{1}{2} J_{2}\right)+i \rho_{12}{ }^{2} \pi J_{2}+p_{2} i \mathrm{C}=0 \tag{4}
\end{align*}
$$

A second set of simultaneous equations may be obtained in $\rho_{24}{ }^{1}, \rho_{34}{ }^{1}, \rho_{24}{ }^{2}$, and $\rho_{34}{ }^{2}$ which differ from the first set in the
${ }^{14}$ J. Heidberg, J. A. Weil, G. A. Janusonis, and J. K. Anderson, J. Chem. Phys., 1964, 41, 1033.

15 J. I. Kaplan, J. Chem. Phys., 1958, 28, 278; 1958, 29, 462.
${ }^{16}$ S. Alexander, J. Chem. Phys., 1962, 37, 967, 974; 1963, 38, 1787; 1964, 40, 2741.
${ }_{17}$ C. S. Johnson, J. Chem. Phys., 1964, 41, 3277; Adv. Magn. Resonance, 1965, 1, 33; J. Magn. Resonance, 1969, 1, 98.
sign of the J 's. These eight complex simultaneous equations are then solved for the ρ 's at each input value of v, and the absorption intensity at v is proportional to the imaginary part of $\Sigma_{\rho_{r s}}{ }^{n}$ for all the eight allowed transitions. The simultaneous equations (1)-(4) show a resemblance to the equations derivable from the McConnell equation for a foursite exchange with no coupling. Figure 2 shows diagrammatically the site exchanges that are represented by the eight simultaneous equations used in the foregoing treatment.

This type of programme, although not as efficient as the more general programme described by Binsch, ${ }^{19}$ proved to be adequate for spectrum simulation. A spectrum consisting of the absorption intensity at 250 values of v required a computing time of only 10 s on an I.C.L. 1907 computer.

The general procedure used to obtain exchange rates involved initially determination of the faster exchange rate

Figure 2 Exchange of nuclei between the four sites (Al, B1, A2, and B2) of two AB systems. The density matrix element corresponding to each transition is indicated. The doubleheaded arrows represent site exchanges with the appropriate rate constant given by each arrow
by setting the slower exchange rate to zero and matching the spectra by variation of the faster exchange rate. Values of the faster exchange rate could then be calculated at higher temperatures by extrapolation from the low temperature values, and the second exchange rate was obtained at higher temperature by inserting trial values into the calculation until agreement was obtained between observed and calculated spectra.

In a preliminary examination of the n.m.r. spectral site exchange rates, k_{c} values were calculated at coalescence temperatures from the equations (5) ${ }^{20}$ and (6), ${ }^{21}$ suitable respectively for a two-site exchange with $p_{\mathrm{A}}=p_{\mathrm{B}}=0.5$, $J_{\mathrm{AB}}=0$ and for the coupled two-site exchange with $J_{\mathrm{AB}} \neq 0$.

$$
\begin{align*}
& k_{\mathrm{C}}=\pi\left(\nu_{\mathrm{A}}-v_{\mathrm{B}}\right) / 2^{\frac{1}{\mathrm{I}}} \tag{5}\\
& k_{\mathrm{C}}=\pi\left[\left(\nu_{\mathrm{A}}-\nu_{\mathrm{B}}\right)^{2}+6 J_{\Lambda \mathrm{B}}{ }^{2}\right]^{\frac{1}{2}} / 2^{\frac{1}{2}} \tag{6}\\
& k_{\mathrm{A}}=\pi\left(W_{\mathrm{A}}-W_{\Lambda \mathrm{O}}\right), \quad k_{\mathrm{B}}=\pi\left(W_{\mathrm{B}}-W_{\mathrm{BO}}\right) \tag{7}
\end{align*}
$$

${ }^{18}$ C. J. Cresswell and R. K. Harris, J. Magn. Resonance, 1971, 4, 99; C. S. Johnson, ibid., 1969, 1, 98.
${ }^{19}$ G. Binsch, J. Amer. Chem. Soc., 1969, 91, 1304.
${ }^{20}$ H. S. Gutowsky and C. H. Holm, J. Chem. Phys., 1956, 25, 1228.
${ }^{21}$ M. Oki, H. Iwamura, and N. Hayakawa, Bull. Chem. Soc. Japan, 1963, 36, 1542; R. J. Kurland, M. B. Rubin, and W. B. Wyse, J. Chem. Phys., 1964, 40, 2426.

Table l
N.m.r. spectra (100 MHz) of chair and boat conformations of $5,6,11,12$-tetrahydrodibenzo $[a, e]$ cyclo-octene and heterocyclic analogues

Compd. (1)	Solvent$\mathrm{CDCl}_{3}-\mathrm{CS}_{2}(\mathbf{1}: 1)$	Temp. $\left({ }^{\circ} \mathrm{C}\right)$	Group	Chemical shifts a $(\tau) \pm 0.01$ Coupling constants $(\mathrm{H} \overline{\mathrm{z}}) \pm 0.5$	Populations
		-86	$\begin{aligned} & \mathrm{C}_{6} \mathrm{H}_{4} \\ & \mathrm{CH}_{2}{ }^{\circ} \mathrm{CH}_{2}{ }^{\text {b }} \end{aligned}$	$\begin{aligned} & 2 \cdot 86(\mathrm{~A}), 3 \cdot 13(\mathrm{~B}) \\ & 6.86(\mathrm{~s}), 7 \cdot 01\left(\mathrm{AA}^{\prime}\right), 7.31\left(\mathrm{BB}^{\prime}\right)^{b} \end{aligned}$	$p_{A} \simeq p_{B} \simeq 0.5$
		+35	$\begin{aligned} & \mathrm{CH}_{2} \cdot \mathrm{CH}_{2}{ }^{b} \\ & \mathrm{C}_{6} \mathrm{H}_{4} \end{aligned}$	$6 \cdot 86(\mathrm{~s}), 7 \cdot 01\left(\mathrm{AA}^{\prime}\right), 7 \cdot 31\left(\mathrm{BB}^{\prime}\right)^{b}$ $3 \cdot 16(\mathrm{AB})$	
			$\mathrm{CH}_{2} \mathrm{CH}_{2}{ }^{4} \mathrm{CH}_{2}{ }^{b}$	$7 \cdot 02 \text { (s) }$	
(7a)	$\mathrm{CDCl}_{3}-\mathrm{CS}_{2}(\mathbf{1}: \mathbf{1})$	-86	$\begin{aligned} & \mathrm{N} \cdot \mathrm{CO} \cdot \mathrm{CH}_{3} \\ & \mathrm{~N} \cdot \mathrm{CH}_{2} \end{aligned}$	$\begin{aligned} & 8.16 \text { (A,) } 8.28 \text { (B) } \\ & 4.11 \text { (A1), } 5.92(\mathrm{Bl}), J 13.5 \end{aligned}$	$\begin{aligned} & p_{\Delta} 0.79, p_{\mathrm{B}} 0.21 \\ & p_{1} 0.79, p_{2} 0.21 \end{aligned}$
	$\mathrm{C}_{6} \mathrm{D}_{5} \cdot \mathrm{NO}_{2}$	$+63$	$\mathrm{N} \cdot \mathrm{CH}_{2}$	4.32 (A12), 6.05 (B12), $J 15.0$	
(7b)	$\mathrm{CDCl}_{3}-\mathrm{CFCl}_{3}(\mathbf{1}: \mathbf{2})$	-74	$\mathrm{N} \cdot \mathrm{CH}_{2}$	$\begin{aligned} & 3 \cdot 94 \text { (A1), } 5 \cdot 50 \text { (B1), } J 15 \cdot 0 \\ & 4 \cdot 42 \text { (A2), } 5 \cdot 91 \text { (B2), } 13.5 \\ & 4 \cdot 25 \text { (A12), } 5 \cdot 76 \text { (B12), } J 14 \cdot 25 \end{aligned}$	$p_{1} 0.425, p_{2} 0.575$
	CDCl_{3}	+35	$\mathrm{N} \cdot \mathrm{CH}_{2}$		
(7c)	$\mathrm{CDCl}_{3}-\mathrm{CFCl}_{3}(\mathbf{1}: 1)$	$\begin{aligned} & -85 \\ & -48 \end{aligned}$	$\underset{\mathrm{N} \cdot \mathrm{CH}_{2}}{\mathrm{~N} \cdot \mathrm{C}_{6} \mathrm{H}_{4} \cdot \mathrm{CH}_{3}}$	$\begin{aligned} & 7.49 \text { (A), } 7.72 \text { (B) } \\ & 4.58 \text { (A), } 5 \cdot 81 \text { (B), } J \quad 13.25 \end{aligned}$	$p_{\text {A }} 0.858, p_{\text {B }} 0.142$
(8a)	CDCl_{3}	-43	$\xrightarrow[\mathrm{N} \cdot \mathrm{CO} \cdot \mathrm{CH}_{2}]{\mathrm{N} \cdot \mathrm{CH}_{3}}$	8.01 (A), 8.18 (B) 4.70 (A1), 5.95 (B1), $J 14.5$ 4.82 (A2), $5 \cdot 27$ (B2), $J 13.5$ 4.76 (A12), 5.64 (Bl 2), $J 14.5$	$\begin{aligned} & p_{\mathrm{A}} 0.428, p_{\mathrm{B}} 0.572 \\ & p_{1} 0.428, p_{2} 0.572 \end{aligned}$
		$+19$	$\mathrm{N} \cdot \mathrm{CH}_{2}$		
(8b)	CDCl_{3}	-33	$\mathrm{N} \cdot \mathrm{CH}_{2}$	$\begin{aligned} & 4 \cdot 30(\mathrm{~A} 1), 4 \cdot 88 \text { (B1), } \quad 14 \cdot 5 \\ & 4 \cdot 35 \text { (A2), } 5 \cdot 02 \text { (B2), } J ~ 15 \cdot 0 \end{aligned}$	$p_{1} 0.54, p_{2} 0.46$
(8c)	$\mathrm{CDCl}_{3}-\mathrm{CFCl}_{3}(1: 1)$	-86	$\mathrm{N} \cdot \mathrm{CH}_{2}$	4.78 (A), 5.56 (B), J ca. 12	c
(8d)	CS_{2}	-74	$\mathrm{S} \cdot \mathrm{CH}_{2}$	5.92 (A1), 7.36 (Bl),, 14.0	$\begin{aligned} & p_{1}=p_{3}=0.155 \\ & p_{2}=p_{4}=0.845 \end{aligned}$
				5.94 (A3), 7.36 (B3), J 14.0	
				5.63 (AB2)	
			ArCH_{3}	7.66 (A), 7.84 (B)	$p_{\text {A }} 0.155, p_{\text {B }} 0.845$
(8e)	CDCl_{3}	-66	$\mathrm{SO}_{2} \cdot \mathrm{CH}_{2}$	$\begin{aligned} & 4 \cdot 51 \text { (A1), } 5 \cdot 20 \text { (B1), } J 14 \cdot 0 \\ & 4.58 \text { (A2), } 5 \cdot 20 \text { (B2), } J ~ 14.0 \end{aligned}$	c
(9a)	$\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}$	$+67$	$\mathrm{N} \cdot \mathrm{CH}_{2}$	$\begin{aligned} & 4.33 \text { (A1), } 5 \cdot 98 \text { (B1), } 16 \cdot 0 \\ & 5 \cdot 07 \text { (A2), } 6 \cdot 22 \text { (B2), } 13.5 \\ & 8 \cdot 40 \text { (A), } 8 \cdot 48 \text { (B) } \end{aligned}$	$\begin{aligned} & p_{1} 0.602, p_{2} 0.398 \\ & p_{\mathrm{A}} 0.622, p_{\mathrm{B}} 0.378 \end{aligned}$
		$+56$	$\mathrm{N} \cdot \mathrm{CO} \cdot \mathrm{CH}_{3}$		
(9b)	$\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}$	$+67$	$\mathrm{N} \cdot \mathrm{CH}_{2}$	$\begin{aligned} & 4 \cdot 42 \text { (A1), } 5 \cdot 79 \text { (B1), } J \quad 16.0 \\ & 4.63 \text { (A2), } 5 \cdot 90 \text { (B2), } J \quad 13.5 \end{aligned}$	$p_{1} 0.50, p_{2} 0.50$
(9c)	$\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}$	$+80$	$\mathrm{N} \cdot \mathrm{CH}_{2}$	$\begin{aligned} & 5 \cdot 44 \text { (A1), } 6.71 \text { (B1), } J 15.0 \\ & 5 \cdot 86 \text { (A2), } 6 \cdot 20 \text { (B2), J } 13.5 \\ & 7.67 \text { (A), } 7.95 \text { (B) } \end{aligned}$	$\begin{aligned} & p_{1} 0.48, p_{2} 0.52 \\ & p_{\mathrm{A}} 0.48, p_{\mathrm{B}} 0.52 \end{aligned}$
			$\mathrm{N} \cdot \mathrm{SO}_{2} \cdot \mathrm{C}_{6} \mathrm{H}_{4} \cdot \mathrm{CH}_{3}$		
(9d)	$\mathrm{CDCl}_{3}-\mathrm{CS}_{2}(\mathbf{1}: \mathbf{1})$		$\begin{aligned} & \mathrm{N} \cdot \mathrm{CH}_{2} \\ & \mathrm{ArCH} \\ & \mathrm{~N} \cdot \mathrm{CH}_{2} \end{aligned}$	$\begin{aligned} & 4.56 \text { (A1), } 5 \cdot 90 \text { (B1), } J 14.0 \\ & 4.74 \text { (A2), } 5.13 \text { (B2), } J 15.0 \\ & 7.50 \text { (A), } 7.58 \text { (B) } \\ & 4.56 \text { (A1), } 5.90 \text { (B1), } 14.0 \\ & 4.96 \text { (AB2) } \end{aligned}$	$\begin{aligned} & p_{1} 0.51, p_{2} 0.49 \\ & p_{\mathrm{A}} 0.503, p_{\mathrm{B}} 0.497 \end{aligned}$
(9e)	$\mathrm{CDCl}_{3}-\mathrm{CS}_{2}(\mathbf{1}: 1)$	-66	$\mathrm{S} \cdot \mathrm{CH}_{2}$	$\begin{aligned} & 5.09 \text { (A1), } 6.20 \text { (B1), J } 12.0 \\ & 5.67 \text { (A2), } 5.90 \text { (B2), } J ~ 13.5 \end{aligned}$	$p_{1} 0 \cdot 80, p_{2} 0.20$
(9f)	$\mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}$	$+34$	$\mathrm{SO}_{2} \cdot \mathrm{CH}_{2}$	4.14 (A), 4.75 (B), J 14.25	c

- Sites are designated (A) and (B) for two-site systems [see Experimental section, methods (a) and (b)] and (A1), (B1), etc. for foursite systems where (A1) refers to the site at $v_{A_{1}}$ and (B1) to the site at $v_{B_{1}}$, etc. [see Experimental section, method (c)]. Sites that represent two time-averaged signals are designated (AB1) [average of (A1) and (B1)] and (A12) [average of (A1) and (A2)], etc. ${ }^{6}$ The $\mathrm{CH}_{2} \cdot \mathrm{CH}_{2}$ group gives an $\mathrm{AA}^{\prime} \mathrm{BB}^{\prime}$ system for the chair conformation and a time-averaged singlet for the boat conformation, which coalesce to a single singlet at higher temperatures. - Only a single conformation was observed.

For cases with $p_{\mathrm{A}} \neq p_{\mathrm{B}}$, site exchange rates at low temperature could also be approximately based upon the simple expression (7), where W is the observed line-width, W_{0} is the line-width in the absence of exchange, k_{A} refers to the rate constant for the $\mathrm{A} \longrightarrow \mathrm{B}$ exchange and k_{B} to the $\mathrm{B} \rightarrow \mathrm{A}$ exchange.

RESULTS AND DISCUSSION

The relevant details of the n.m.r. spectra, their temperature dependence, and the calculated activation parameters associated with site exchange processes are listed in Tables 1 and 2 for the series of compounds (1),
$(7 a-c),(8 a-\mathrm{e})$, and $(9 a-f)$. Table 2 also specifies the method of computation used to examine site exchange rates. The values of ΔG^{\ddagger} obtained from the comparison of observed and computed spectra, which is generally considered to be the most accurate method of obtaining exchange rates, ${ }^{22}$ do not differ significantly from those
${ }^{22}$ For reviews and critical discussions see (a) G. Binsch, Topics Stereochem., 1968, 3, 97; (b) J. Jonas and H. S. Gutowsky, Ann. Rev. Phys. Chem., 1968, 19, 448; (c) L. M. Jackman, T. E. Kavanagh, and R. C. Haddon, Org. Magn. Resonance, 1969, 1, 109; (d) I. O. Sutherland, Ann. Reports N.M.R. Spectroscopy, 1971, 4, 71.
Table 2
ers for the conformational changes of 5，6，11，12－tetrahydrodibenzo $[a, e]$ cyclo－octene
and heterocyclic analogues Method of Number Process ${ }^{g}$
Chair \rightleftharpoons Boat
Chair \rightleftharpoons Boat
Boat \rightleftharpoons Boat＊
Chair \rightleftharpoons Boat
Boat \rightleftharpoons Boat＊
 $\begin{array}{ll}0 \\ i & 0 \\ i & i \\ 0 & 0 \\ i & i \\ i & i\end{array}$ $+0.08(-33)$
$-0.68(-74)$
$+0.28(+67)$
$+0.32(+56)$
$0.00(+67)$
 Inversion
Chair \rightleftharpoons Boat Inversion
Boat \rightleftharpoons Boat＊ $+0.01(-74) \quad$ Chair \rightleftharpoons Boat
$+0.57(-66) \quad \underset{\text { Boat }}{\text { Chair }} \mathrm{CBoat}^{*}$ Boat Chair \rightleftharpoons Boat
$\mathrm{C}=\mathrm{C} \%$
$5 \quad+61$ to $+81 \quad 18 \cdot 6(19 \cdot 0)$
CT refers to the use of the coalescence temperature

$\frac{\Delta G^{\ddagger c-e}}{\mathrm{kcal} \mathrm{mol}^{-1}}$
$10 \cdot 2$
$(L \cdot \varepsilon I) 90 \cdot 7 I$
$(\zeta \cdot L I) 6.9 I$

$22 \cdot 4$

∞
$\stackrel{\infty}{\infty}$
$\stackrel{\infty}{\infty}$
$\dot{\omega}$
$\dot{\omega}$
$21.05(21.2)$
$19 \cdot 6(19 \cdot 3)$
$18.8(18.4)$
$10.6(10.4)$
$13 \cdot 8(13 \cdot 4)$
$12 \cdot 4(11.9)$
$14 \cdot 4$
웁
11.35
$17 \cdot 7$

 ＊frog $\rightleftharpoons 780 \mathrm{~g}$ Inversion
 $*$
u
u
u Chair \rightleftharpoons Boat uols．anui 0
8
\pm
8
0
1 $+0.57(-66)$ $18.8(18 \cdot 4)$
$10 \cdot 6(10 \cdot 4)$ $13 \cdot 8(13 \cdot 4)$
 ${ }^{b}$ See Experimental section．

 （Pf）$\quad C_{5} D_{5} N$ ArCH
$\mathrm{S} \cdot \mathrm{CH}_{2}$ $\mathrm{SO}_{2} \cdot \mathrm{CH}_{2}$
 TLS－（c） O I TLS－（c）
 $\overbrace{\stackrel{B}{6}}^{\stackrel{B}{6}}$ am TI S－（b） 5年 $\mathrm{A} \leftrightharpoons \mathrm{B}$ \quad Group
$\mathrm{C}_{6} \mathrm{H}_{4}$
$\mathrm{~N} \cdot \mathrm{CO} \cdot \mathrm{CH}_{3}$
$\mathrm{~N} \cdot \mathrm{CH}_{2}$
$\mathrm{~N} \cdot \mathrm{CH}_{2}$
$\mathrm{~N} \cdot \mathrm{CH}_{2}$
$\mathrm{~N} \cdot \mathrm{SO}_{2} \cdot \mathrm{C}_{6} \mathrm{H}_{4} \cdot \mathrm{CH}_{3}$
 $\mathrm{N} \cdot \mathrm{CO} \cdot \mathrm{CH}_{3}$
 $\mathrm{N} \cdot \mathrm{CH}_{2}$突然 $\mathrm{N} \cdot \mathrm{CH}_{2}$ $\mathrm{N} \cdot \mathrm{CO} \cdot \mathrm{CH}_{3}$ $\mathrm{N} \cdot \mathrm{CH}_{2}$ $\mathrm{N} \cdot \mathrm{CH}_{2}$ $\mathrm{N} \cdot \mathrm{CH}_{2}$

obtained by use of approximations based upon either coalescence temperatures or low temperature linebroadening [equations (5)-(7)]. The n.m.r. spectra of the diazocine derivative $(8 \mathrm{~g})$ and the azocine derivative (7d) did not show temperature dependence down to -100°; it is therefore probable that the conformational changes associated with these compounds are fast on the n.m.r. time scale even at this low temperature.

Examination of molecular models shows that there are three low energy conformations of 5,6,11,12-tetrahydrodibenzo $[a, e]$ cyclo-octene (1) and its heterocyclic analogues (7)-(9) [represented conveniently by the general formula (11)]. \dagger The first is the chair conformation C (12a), the second is the boat conformation B (13a), and the third is the twist-boat conformation TB (14a). These conformations and their enantiomers, C^{*} (12b), $B^{*}(13 b)$, and TB* (14b), are shown in the appropriate conformational formulae. The C (12) and B (13) conformations are characterised by groups of atoms which lie in (or close to) planes, and the lines of intersection of these planes are indicated by the broken lines in the diagrams. In the case of the hydrocarbon (1) (11; $\mathrm{W}=\mathrm{X}=\mathrm{Y}=\mathrm{Z}=\mathrm{CH}_{2}$), the conformations C and C^{*} are identical and have $C_{2 h}$ symmetry. These conformations, C and C^{*}, are also identical for the dibenzo $[b, f]$ $[1,4]$ diazocine derivatives ($8 \mathrm{a}-\mathrm{c}$) and have C_{s} symmetry. The conformations B and B^{*} are also identical for these four compounds $[(1),(8 \mathrm{a}-\mathrm{c})]$, having either $C_{2 v}$ symmetry (l) or C_{s} symmetry ($8 \mathrm{a}-\mathrm{c}$). The TB conformations ($\mathbf{1 4 a}$) and ($\mathbf{1 4 b}$) do not have reflection symmetry so that in all cases the chiral conformations TB and TB* are related as enantiomers. In spite of the identity of the pairs of conformations C and C^{*} and B and B^{*} in some cases, it is convenient to maintain the distinction in all cases in the discussion that follows. This decision has been made because the environments of the individual hydrogen atoms in a ring methylene group are mutually exchanged by the inversion of any of the conformational types C, B, and TB to give the $\mathrm{C}^{*}, \mathrm{~B}^{*}$, and TB* conformations, respectively.

These conformations (12)-(14), and other conformational types discussed in this paper, are also described below the formulae in the usual notation, ${ }^{2 a, 23}$ in which the torsional angles about each of the six single bonds of the eight-membered ring are defined as positive (15a), negative (15b), or zero (15c) when viewed from atom n to atom $n+1$ [see (11)] as shown in the Newman projections (15) ; the curved bond represents the remainder of the eight-membered ring. This notation is used for the bonds in the order $4 \mathrm{a}-5,5-6,6-6 \mathrm{a}, 10 \mathrm{a}-11,11-12$, and 12-12a. Thus, for example, the C conformation (12a) is described as +-+-+- . This representation is useful in that the torsional changes that lead to the inter-

[^1]conversion between diastereomeric conformations or inversion between enantiomeric conformations may readily be recognised from the changes in the sign of individual torsional angles.

From the examination of models, it is possible to postulate twelve reasonable transition state geometries for the interconversion or inversion between any two of

(11)

(12a) $C+++-+-$

(12b) $C^{*-+-+-+~}$
Chair conformations

(13b) $B^{*}+0-+0-$
Boat conformations

(14a) TB+-++-+

(14b) TB*-+--+-

Twist-boat conformations
the conformations $\mathrm{C}, \mathrm{C}^{*}, \mathrm{~B}, \mathrm{~B}^{*}$, TB, and TB*. These conformational changes are shown in Figure 3. The twelve transition states for these interconversions are shown in the formulae (16)-(21)(a-b); they are of three general types.

Those of the first type, the folded boat conformations, FB1 (16a), FB1* (16b), FB2 (17a), and FB2* (17b), are recognised by the approximate coplanarity of two groups of five atoms in the eight-membered ring, and the lines of intersection of these t.wo planes are shown as broken lines in the diagrams ($16 a$ and b) and ($17 a$ and b). The principal non-bonded interactions in the transition state of this type (FB), which are relevant for the processes $\mathrm{B} \rightleftharpoons \mathrm{TB}, \mathrm{TB} \rightleftharpoons \mathrm{B}^{*}, \mathrm{~B} \rightleftharpoons \mathrm{~TB}^{*}$, and $\mathrm{TB}^{*} \rightleftharpoons \mathrm{~B}$ (see Figure 3) are the transannular interactions between the ring atoms and their substituents located at or near the broken lines in the diagrams (16) and (17). For compounds (7 a and b), (8 a and b), and (9 a and b), having
${ }_{23}$ W. Klyne and V. Prelog, Experientia, 1960, 16, 521.
an N-acyl group in the eight-membered ring, there are additional non-bonded interactions caused by a zero torsion angle for the $\mathrm{N}-\mathrm{Ar}$ bond $[(7$; bond $4 \mathrm{a}-5)$, (8; bond $4 \mathrm{a}-5$ or $12-12 \mathrm{a}$), and (9 ; bond $4 \mathrm{a}-5$ or $10 \mathrm{a}-11$)].

The second type of transition state is exemplified by the four conformations TS1 (18a), TS1* (18b), TS2 (19a), and TS2* (19b). These four conformations are characterised by one coplanar group of six of the atoms of the eight-membered ring and a second group of four coplanar atoms; the lines of intersection of the two planes are shown as broken lines in the diagrams (18a and b) and

$(15 a)+$

(15b) -

(15c) 0

(17a) FB $2+-0+-0$
(18a) TS1 $0-+-+0$

(17b) $\mathrm{FB}^{*}-+0-+0$

(18b) TS1 * $0+-+-0$
(19a and b). This geometry results in strained values for the bond angles indicated by $\alpha, \beta, \gamma, \delta, \varepsilon$, and θ in the formula (18a), the other two bond angles of the eightmembered ring having acceptable values by appropriate adjustment of the angle between the two planes. Additional important non-bonded interactions may also result in these transition states (18) and (19) if the torsion angle about one or more $\mathrm{Ar}^{-} \mathrm{N} \cdot \mathrm{COR}$ bonds is reduced to zero.

The third type of transition state includes the four conformations TS3 (20a), TS3* (20b), TS4 (21a), and TS4* (21b). These transition states are characterised by a single coplanar group of four atoms (4a, 5, 6, and 6a; or $10 a, 11,12$, and 12a). The other four atoms of the eightmembered ring adopt a minimum energy arrangement which is related to the geometries of the appropriate C, C*, TB, and TB* conformations [see (12)-(14)] which
are directly interconverted by way of these transition states (see Figure 3).

(19a) TS2 $+-00+-$

(20a) TS3 +-+ 000

(21a) TS4 000 +-t

(19b) TS2 * $-+00-+$

(20b) TS3 * -+-000

The remaining problem is to assign the various types of possible conformational change summarised in Figure 3 to the observed temperature dependence of the n.m.r. spectra of 5,6,11,12-tetrahydrodibenzo[a,e]cyclo-octene (1) and the heterocyclic analogues (7)-(9). This is most easily done by considering four different types of conformational behaviour, (i)-(iv).

Type (i). 5,6,11,12-Tetrahydrodibenzo[a, e]cyclo-octene (1) and the 5,6,11,12-tetrahydrodibenzo $[\mathrm{b}, \mathrm{f}]$ dithiocin derivatives (8 d and e) and (9 e and f). The unsubstituted hydrocarbon (l) is relatively easily placed within the scheme of conformational changes shown in Figure 3.

Figure 3 Relationships between the six ground state conformations $C, C^{*}, B, B^{*}, T B$, and TB* and the twelve transition states FBI, FBI*, FB2, FB2*, TS1, TS1*, TS2, TS2*, TS3, TS3*, TS4, and TS4*

Its n.m.r. spectrum at low temperatures indicates almost equal population of two diastereomeric conformations. These are a relatively rigid conformation for which the ring $\mathrm{CH}_{2}-\mathrm{CH}_{2}$ unit gives an $\mathrm{AA}^{\prime} \mathrm{BB}^{\prime}$ spectrum and a mobile, rapidly inverting conformation for which a
singlet signal is observed for its ring CH_{2} protons. The non-bonded interactions in the FB conformations (16) and (17) in this case are expected to be small and the mobile conformation must therefore be of the Boat \ddagger type. The more rigid conformation must be the Chair conformation, \ddagger since both types of transition state $[\mathrm{TS} 1 \equiv \mathrm{TS} 2 \equiv \mathrm{TS} 1 * \equiv \mathrm{TS} 2 *$, (18) and (19)] and $[\mathrm{TS} 3 \equiv \mathrm{TS} 4$, TS3*三TS4*, $(20$ and $(21)]$ for the process $\mathrm{C} \longrightarrow$ Boat $\rightarrow C^{*}$, which are required for the inversion of this conformation, have considerable angle strain. The observed value of $\Delta G^{\ddagger}\left(10 \cdot 2 \mathrm{kcal} \mathrm{mol}^{-1}\right)$ for the process Chair \longrightarrow Boat, based upon the coalescence of the two aryl-proton singlet signals observed at low temperatures, is in good agreement (see later) with a transition state of the former type ($c f$. TS1). The relationship between this result and the previous studies of 5,6,11,12-tetrahydrodibenzo $[a, e]$ cyclo-octene (1) and its derivatives is important. In this case it is clear that the crystal structure ${ }^{3}$ is not a reliable guide to the conformational situation in solution (cf. refs. 4-6), since it is now established that $5,6,11,12$-tetrahydrodibenzocyclo-octene (1) has the centrosymmetrical Chair conformation in the solid state, ${ }^{3}$ whereas Chair and Boat conformations are approximately equally populated in solution ($\mathrm{CDCl}_{3}-\mathrm{CS}_{2}$).

The foregoing discussion, which is based largely upon the examination of molecular models, is supported by calculations of steric strain in the various conformations of the hydrocarbon (1), using a computer programme based upon the Wiberg (steepest descent) procedure ${ }^{2 b}$ for minimising strain energy. Thus, the various contributions to the strain energy of the conformational types C, TS1, B, FB, TB, and a minimum energy Boat conformation are given in Table 3. This minimum energy Boat conformation is characterised by a torsion angle of $c a .+26^{\circ}$ about the 5-6 and 11-12 bonds and is therefore situated geometrically between B^{*} and FBI * in the conformational itinerary depicted in Figure 3 (there are also three other equivalent minimum energy Boat conformations associated with three equivalent positions in this itinerary).

The figures given in Table 3 should be used in a qualitative rather than a quantitative sense, but they do show clearly that the strain energy of the various conformational types is minimised by the optimum distribution of the strain energy over its components. It is also evident that the relief of torsional strain in the transition state TS1 is an important factor in determining the energy barrier for the process $\mathrm{C} \longrightarrow$ Boat in addition to the more obvious development of angle strain in the transition state. The energy barrier to the process $\mathrm{B} \rightarrow \mathrm{TB}$, involving the FB transition state, is low because torsional strain is also relieved to a considerable extent in this transition state and because the apparently large non-bonded interactions in an undistorted Dreiding model of the FB conformation can be effectively relieved
\ddagger The description 'Boat' used here and later in the paper refers to any conformation of the boat family. The descriptions $\mathrm{B}, \mathrm{B}^{*}, \mathrm{~TB}$, and TB * are specific. Similarly, the description 'Chair' refers to both the C and $C *$ conformations and the descriptions C and $C *$ are specific.
by a distortion of the bond angles at the atoms of the eightmembered ring. It would be desirable to extend these calculations to the other compounds discussed in the paper, but this involves difficulties in selecting potential functions which have not yet been resolved, and the remainder of the discussion must therefore be limited to

Table 3

Strain energy in selected conformations of 5,6,11,12-tetrahydrodibenzo[a,e]cyclo-octene (1)

Conformation	$E_{\mathrm{R}^{\text {a }}}$	$E_{\theta^{a}}$	$E_{\phi}{ }^{\text {a,b }}$	$E_{8}{ }^{\text {a }}$	$E_{\mathrm{NBI}^{\text {a }}}$	$E_{8}{ }^{\text {a }}$
$\mathrm{C} \equiv \mathrm{C}^{*}$	$0 \cdot 02$	$0 \cdot 69$	$5 \cdot 59$	0.01	$0 \cdot 14$	6.45
$\begin{gathered} \mathrm{TS} 1 \\ \equiv \mathrm{TS}^{*} 1^{*} \equiv \mathrm{TS} 2 \\ \hline \end{gathered}$	$0 \cdot 62$	$15 \cdot 05$	$0 \cdot 06$	0.04	$1 \cdot 23$	17.90
Minimum energy boat conformation	$0 \cdot 10$	0.35	$3 \cdot 72$	$0 \cdot 63$	$1 \cdot 89$	$6 \cdot 69$
$\mathrm{B} \equiv \mathrm{B}^{*}$	0.08	0.98	$6 \cdot 00$	0.01	0.43	7.50
$\begin{aligned} & \mathrm{FB1} \equiv \mathrm{FB1}^{*}, \\ & \mathrm{FB} 2 \equiv \mathrm{FB}^{*} * \end{aligned}$	$0 \cdot 28$	$8 \cdot 35$	$1 \cdot 20$	0.07	$1 \cdot 28$	$11 \cdot 18$
TB \equiv TB*	$0 \cdot 02$	$0 \cdot 89$	6.04	$0 \cdot 07$	0.44	$7 \cdot 46$

${ }^{a}$ The following energy terms are used: E_{R} (bond length strain), E_{θ} (angle strain), E_{ϕ} (torsional strain), E_{8} (out of plane strain in the aromatic rings), $E_{\text {NBI }}$ (non-bonded interactional strain). Total strain energy $\left(E_{\mathrm{S}}=E_{\mathrm{R}}+E_{\theta}+E_{\phi}\right.$ $\left.+E_{\boldsymbol{\delta}}+E_{\text {NBI }}\right)$. The force constants are those used by Boyd ${ }^{2 g}$ for calculations of strain energy in cyclophanes, with a reduction by a factor of 0.7 in angle strain energy based upon the observed conformational changes of (1) and similar hydrocarbons ($c f$. ref. $2 f$). ${ }^{b}$ The major component of E_{ϕ} is mainly associated with the 5-6 and 11-12 bonds. Torsional strain $2 g$ in the aromatic rings is virtually absent.
a more qualitative approach. A number of very approximate calculations of minimised angle strain in the transition states TS1 or TS2 are summarised in Table 4. The value of these calculations is strictly limited, but they do assist in the discussion that follows in the assignment of n.m.r. spectral changes to processes involving particular conformational change.

The n.m.r. spectra of the two dithiocin derivatives (8d) and (9 e) show at low temperatures evidence (see Table l) for a more highly populated mobile conformation together with a minor, more rigid conformation. On the basis of the following analysis these two conformations have been identified as Boat and Chair, respectively.

The compound (8d) has non-equivalent C-6 and C-11 methylene groups. Its major mobile conformation gives two singlet signals (AB2 and AB4) at low temperatures. Its minor, more rigid, conformation gives two AB systems (A1,B1 and A3,B3) which coalesce with the singlets (AB2 and AB4) at higher temperatures. The kinetics of the processes associated with these n.m.r. spectral changes were more easily determined by examination of the coalescence of the two aryl-methyl group singlet signals (A and B) observable at low temperatures. This gave activation parameters which could be assigned to the process:

$$
\text { Chair (minor conformer) } \rightarrow \text { Boat (major conformer) }
$$

The calculated angle strain ($E_{\dot{\theta}}=14.8 \mathrm{kcal} \mathrm{mol}^{-1}$ for the transition state ($\mathrm{TS} 1 \equiv \mathrm{TS} 1^{*}$) is similar (see Table 4; $E_{\theta}-2 E_{\omega}=10.5 \mathrm{kcal} \mathrm{mol}^{-1}$) to the observed activation energy ($\Delta G^{\ddagger}=12.0 \mathrm{kcal} \mathrm{mol}^{-1}$).

The compound (9e) shows conformational behaviour
similar to that of (8d). Its equivalent C-6 and C-12 methylene groups give two AB systems at low temperatures assignable to a major, more mobile conformation Al, Bl and a minor, more rigid conformation; these two AB systems coalesce to a broad singlet at higher temperatures. In this case it is also reasonable to assume that the more mobile conformation is of the Boat type and the minor conformer has the Chair conformation. The calculated angle strain in the enantiomeric transition states TS1 \equiv TS2 and TS1*三TS2* (Table 4) supports this assignment. The transition states for inversion of the more mobile Boat conformation of both dithiocin derivatives (8 d) and (9 e) are of the FB type (see Figure 3), and the more rapid inversion of (8 d) (the signals AB 2 and AB 4 are singlets down to -100°) is

Chair for the dithiocin (8 d) $\left(\Delta G^{\ddagger} 12.0 \mathrm{kcal} \mathrm{mol}^{-1}\right)$. The similarity of these two energy barriers suggests that both are associated with the same type of transition state ($\mathrm{TSl} \equiv \mathrm{TS1} 1^{*}$) and that the observed inversion process for the disulphone (8e) possibly involves the pathway $\mathrm{C} \approx$ $\mathrm{TSl} \rightleftharpoons \mathrm{B} \rightleftharpoons \mathrm{B}^{*} \rightleftharpoons \mathrm{TSI}^{*} \rightleftharpoons \mathrm{C}^{*}$ (with the process $B \Longrightarrow B^{*}$ fast); this opinion is supported by the examination of models. The disulphone (9f) also appears to exist in a single conformation from its low-temperature n.m.r. spectrum, which shows a single $A B$ system (A, B) from the equivalent $\mathrm{C}-6$ and $\mathrm{C}-12$ methylene groups which coalesces to a singlet at higher temperatures with a rather higher barrier for the inversion process (ΔG^{\ddagger} $18.6 \mathrm{kcal} \mathrm{mol}^{-1}$) than the barrier for the inversion of the corresponding sulphide (9e) $\left(\Delta G^{\ddagger} 12 \cdot 4 \mathrm{kcal} \mathrm{mol}^{-1}\right.$ for

Table 4
Approximate calculations of angle strain $\left(E_{\theta}\right)$ in transition state TSl (18a)

Compounds ${ }^{\text {a }}$	W	X	Y	Z	$\frac{E_{\theta} b, c}{\text { kcal } \mathrm{mol}^{-1}}$	$\frac{E_{\omega}{ }^{d}}{\mathrm{kcal}^{\mathrm{mol}}{ }^{-1}}$	$\frac{\Delta G^{\ddagger}{ }_{\mathrm{c} \rightarrow \mathrm{~B}^{e}}}{\text { kcal } \mathrm{mol}^{-1}} \text { (Exptl.) }$
(1)	CH_{2}	CH_{2}	CH_{2}	CH_{2}	13.3	2.88	10.2 (1)
(9e)	CH_{2}	S	CH_{2}	S	15.4	$2 \cdot 13$	$14 \cdot 4$ (9e)
(8d)	CH_{2}	S	S	CH_{2}	18.9	$2 \cdot 13$	
(8d)	S	CH_{2}	CH_{2}	S	14.8	$2 \cdot 13$	12.0 (8d)
(8a), (8b	NR	CH_{2}	CH_{2}	NR	$8 \cdot 3{ }^{\text {f }}$		
(8a), (8b)	CH_{2}	NR	NR	CH_{2}	13.2		12.9 (8a), 14.0 (8b)
(7a), (7b), (7c)	CH_{2}	CH_{2}	NR	CH_{2}	13.2		$11 \cdot 1(7 \mathrm{a}), 11 \cdot 3(7 \mathrm{~b}), 10 \cdot 6$ (7c)
(7a), (7b), (7c)	CH_{2}	CH_{2}	CH_{2}	NR	$11.0{ }^{\prime}$		
$\begin{aligned} & (9 \mathrm{a}),(9 \mathrm{~b}),(9 \mathrm{c}) \\ & (9 \mathrm{~d}) \end{aligned}$	CH_{2}	NR	CH_{2}	NR	$10.2{ }^{\text {f }}$		$\begin{aligned} & 22 \cdot 4(9 a), 20 \cdot 8(9 b) \\ & 19 \cdot 6(9 c), 13 \cdot 8(9 d) \end{aligned}$

- The compounds listed are those for which the transition states with given $\mathbf{W}, \mathbf{X}, \mathbf{Y}$, and Z are relevant. ${ }^{b}$ Calculated using $E_{\theta}=0.021914 \Sigma \Delta \theta^{2}$ over the bond angles $\alpha, \beta, \gamma, \delta, \varepsilon$, and $\theta(18 a)$, where $\Delta \theta$ is the calculated deformation of these angles from their equilibrium values (ref. 27). © Assumed equilibrium bond lengths: $\mathrm{Ar}-\mathrm{N} 1 \cdot 45, \mathrm{CH}_{2}-\mathrm{N} 1 \cdot 47, \mathrm{Ar}-\mathrm{CH}_{2} 1 \cdot 51, \mathrm{CH}_{2}-\mathrm{CH}_{2} 1 \cdot 54, \mathrm{Ar}-\mathrm{S} 1 \cdot 76$. $\mathrm{CH}_{2}-\mathrm{S} 1 \cdot 82, \mathrm{C}=\mathrm{C}$ (in aromatic ring) $1.39 \AA$. Assumed equilibrium bond angles $\widehat{\mathrm{CNC}} 120^{\circ}, \mathrm{C}=\widehat{\mathrm{CX}} 120^{\circ}, \widehat{\mathrm{CSC}} 109^{\circ}, \widehat{\mathrm{CCC}} 111^{\circ}$. ${ }^{d}$ Torsional barriers about 5-6 and $11-12$ bonds for $\mathrm{CH}_{2}-\mathrm{CH}_{2}$ and $\mathrm{CH}_{2}-\mathrm{S}$ bonds based upon ethane and dimethyl sulphide (ref. 28). - The number in parentheses indicates the compound for which the energy barrier was measured. Since torsional strain about the $5-6$ and $11-12$ bonds in the Chair conformation is almost totally relieved in TS1 (Table 3), $\Delta G^{\ddagger} \mathrm{c} \rightarrow \mathrm{B}$ (Exptl.) should be compared with $E_{\theta}-2 \mathrm{E}_{\omega}$. \quad A torsion angle of 0° about one or more $\mathrm{Ar}-\mathrm{NR}$ bonds is involved in TSl and ΔG^{\ddagger} is therefore expected to be considerably greater than E_{θ} for $\mathrm{R}=\mathrm{Ac}, \mathrm{Bz}$ or $\mathrm{SO}_{2} \cdot \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-p$.
presumably a result of the smaller, transannular, nonbonded interactions between a sulphur atom and a methylene group in the $\mathrm{FB1} \equiv \mathrm{FB} 2$ and $\mathrm{FB} 1^{*} \equiv \mathrm{FB} 2 *$ conformations of (8 d) [see (16 and 17) (a and b), $\mathrm{W}=\mathrm{Z}=$ $\left.\mathrm{S}, \mathrm{X}=\mathrm{Y}=\mathrm{CH}_{2}\right]$, as compared with the larger interaction between two sulphur atoms in the FB2 and FB2* conformations of (9 e) [see (17 a and b), $\mathrm{W}=\mathrm{Y}=\mathrm{S}$, $\left.\mathrm{X}=\mathrm{Z}=\mathrm{CH}_{2}\right]$. The Boat conformation of (9 e) accordingly shows a rather higher energy barrier to inversion $\left(\Delta G^{\ddagger} 12.4 \mathrm{kcal} \mathrm{mol}^{-1}\right)$ than that of (8d) $\left(\Delta G^{\ddagger}<9 \mathrm{kcal}\right.$ mol^{-1}). These opinions are based upon the examination of models and very approximate calculations in addition to the experimental facts. Detailed calculations are difficult to carry out for compounds in which there is potential conjugation between the sulphur atoms and the aromatic rings.

The cyclic disulphones (8e) and (9f), corresponding to the dithiocin derivatives (8 d) and (9 e), show rather different conformational behaviour. Thus, the low temperature spectrum of (8e) shows evidence for one conformation only with an inversion barrier ($\Delta G^{\ddagger} 11.9$ $\mathrm{kcal} \mathrm{mol}{ }^{-1}$) similar to the barrier for the process Boat \longrightarrow

Boat \rightleftharpoons Boat*). This higher energy barrier could be a consequence of the larger, non-bonded interactions between the sulphonyl groups in the transition states FB2 and FB2* [see (17a and b), $\mathrm{W}=\mathrm{Y}=\mathrm{SO}_{2}$, $\left.\mathrm{X}=\mathrm{Z}=\mathrm{CH}_{2}\right]$. However, additional temperature dependence of the low field aryl proton signals in the same temperature range in which the $A B$ system from the methylene protons coalesces to a singlet, suggests that the inversion process involves a rate-determining interconversion to a minor conformation which then undergoes a relatively rapid inversion. These observations are consistent (see Figure 3) with the equivalent inversion pathways $\mathrm{C} \rightleftharpoons \mathrm{B} \rightleftharpoons \mathrm{C}^{*}$ and $\mathrm{C} \rightleftharpoons \mathrm{B}^{*} \rightleftharpoons \mathrm{C}^{*}$ with the rate-determining transition states TS1 $=\mathrm{TS} 2$ and TS1*三TS2* [see (18 and 19) (a and b), $\mathrm{W}=\mathrm{Y}=\mathrm{SO}_{2}$, $\left.\mathrm{X}=\mathrm{Z}=\mathrm{CH}_{2}\right]$. The non-bonded interaction between the sulphonyl group at position 5 or 11 and the methylene group at position 12 or 6 in these transition states evidently raises their energy relative to the similar transition states for the dithiocin derivative (9e).

Type (ii). 5,6,11,12-Tetrahydrodibenz[b, $]$ azocine derivatives $(7 a-c)$. The n.m.r. spectra of these three
compounds all show similar temperature dependence (see Tables 1 and 2). At low temperatures the C-6 methylene group gives rise to two AB systems (A1,B1 and A2,B2), corresponding to two diastereomeric conformations, which coalesce to a single AB system (A12,B12) at higher temperatures. Finally, this single AB system coalesces to a singlet when the temperature is further raised and conformational inversion also becomes fast on the n.m.r. time-scale. The magnitudes of the energy barriers for the interconversion between diastereomeric conformations for all three compounds [(7a), $\Delta G^{\ddagger} 11 \cdot 1$; (7b), $\Delta G^{\ddagger} 11 \cdot 4$; (7 c), $\Delta G^{\ddagger} 10.6 \mathrm{kcal} \mathrm{mol}^{-1}$] are almost identical, and this process is associated with the process Chair \rightleftharpoons Boat. This interconversion probably proceeds by way of the transition states TS2 and TS2* [(19a and b), $\mathrm{W}=\mathrm{NAc}(7 \mathrm{a}), \mathrm{W}=\mathrm{NBz}(7 \mathrm{~b})$, and $\mathrm{W}=\mathrm{N} \cdot \mathrm{SO}_{2} \cdot \mathrm{C}_{6} \mathrm{H}_{4}^{-}$ $\mathrm{Me}-p(7 \mathrm{c}), \mathrm{X}=\mathrm{Y}=\mathrm{Z}=\mathrm{CH}_{2}$] or TSl and TS1*. The transition states TS1 and TS1* involve a zero torsion angle about the N-aryl (4a-5) bond with resulting severe, but varied, non-bonded interactions [see (18a and b), $\mathrm{W}=\mathrm{NAc}(7 \mathrm{a}), \mathrm{W}=\mathrm{NBz}(7 \mathrm{~b})$, or $\mathrm{W}=\mathrm{N} \cdot \mathrm{SO}_{2} \cdot \mathrm{C}_{6} \mathrm{H}_{4}-$ Me- $\left.p(7 \mathrm{c}), \mathrm{X}=\mathrm{Y}=\mathrm{Z}=\mathrm{CH}_{2}\right]$; the observed relatively small and similar free energies of activation are therefore only consistent with the pathways $\mathrm{C} \rightleftharpoons$ Boat* and $\mathrm{C}^{*} \rightleftharpoons$ Boat involving the transition states TS2 and TS2* respectively (Figure 3). The roughly calculated angle strain in the eight-membered ring in these transition states is in agreement with this conclusion (Table 4). The inversion process, which affects the n.m.r. spectra at higher temperatures, involves free energy barriers [(7a), $\Delta G^{\ddagger} 20 \cdot 1 ;(7 \mathrm{~b}), \Delta G^{\ddagger} 17 \cdot 7$; (7c), $\Delta G^{\ddagger} 14 \cdot 3$ kcal $\left.\mathrm{mol}^{-1}\right]$ which are similar in magnitude to those observed ${ }^{24}$ for rotation about the N-aryl bonds of the analogous o-toluidine derivatives (22) [(22a), $\Delta G^{\ddagger} 19 \cdot 3$; (22b), $\Delta G^{\ddagger} 18 \cdot 1$; (22c), $\left.\Delta G^{\ddagger} 15 \cdot 3 \mathrm{kcal} \mathrm{mol}^{-1}\right]$. This similarity is readily understandable in terms of the structural similarity between the transition states FB1 and FBl^{*} [e.g. (23) and (16a and b), $\mathrm{W}=\mathrm{NAc}(7 \mathrm{a})$; $\mathrm{W}=\mathrm{NBz}(7 \mathrm{~b}) ;$ or $\mathrm{W}=\mathrm{N} \cdot \mathrm{SO}_{2} \cdot \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-p$ (7c), $\mathrm{X}=$ $\left.\mathrm{Y}=\mathrm{Z}=\mathrm{CH}_{2}\right]$ and the transition states [e.g. (24)] for rotation about the $\mathrm{N}-\mathrm{Ar}$ bonds of the o-toluidine derivatives (22). The principal non-bonded interactions (a, b, and c) in these transition states are indicated to emphasise this similarity.

Thus, the inversion process, evident from the n.m.r. spectra of $(7 a-c)$, involves the rate-determining steps $\mathrm{B} \rightleftharpoons \mathrm{TB}$ and $\mathrm{B}^{*} \rightleftharpoons \mathrm{~TB}^{*}$, but this conclusion, although it supports the hypothesis that both Chair and Boat conformations are present in solution, does not permit the assignment of the observed n.m.r. signals to one or other of these conformations. It is also not

[^2]possible to distinguish between the B and TB possibilities for the Boat conformers.

For the azocine derivatives (7a and b) a further possible process requiring consideration which might be involved in the interconversion of diastereomers is hindered rotation about the $\mathrm{N}-\mathrm{CO}$ bonds of the amide groups. This possibility can be ruled out on a number of grounds. Thus, the energy barriers associated with these conformational changes in (7a and b) are very much lower

$\left(\Delta G^{\ddagger}\right.$ ca. $\left.11 \mathrm{kcal} \mathrm{mol}{ }^{-1}\right)$ than those normally observed ${ }^{22 a, 22 c, 25}$ for rotation about the $\mathrm{N}-\mathrm{CO}$ bonds (ΔG^{\ddagger} ca. $16-18 \mathrm{kcal} \mathrm{mol}^{-1}$) of amides. Furthermore, the sulphonamide derivative (7c) shows similar spectral changes to the amides (7 a and b) although hindered rotation about an $\mathrm{N}-\mathrm{SO}_{2}$ bond would not be expected to be observable. Finally, it should be emphasised that the n.m.r. spectra of the analogous o-toluidine derivatives ${ }^{24}$ (22 a and b) show no evidence for more than one populated amide configuration.

Type (iii). 5,6,11,12-Tetrahydrodibenzo $[\mathrm{b}, \mathrm{f}][1,4]$ diazocine derivatives $(8 a-c)$. The n.m.r. spectra of these $1,4-$ diazocine derivatives show considerable differences in their temperature-dependent behaviour (Tables 1 and 2). Thus, the N-acetyl derivative (8a)* gives two AB systems for the equivalent C-6 and C-11 methylene groups (A1,B1 and A2,B2) at low temperatures, which coalesce to a single $A B$ system (A12,B12) at higher temperatures, and this AB system coalesces to a singlet when the temperature is further raised. The n.m.r. spectrum of the N-benzoyl derivative (8b) also shows two AB systems for the C-6 and C-11 methylene groups at low temperatures (A1,B1 and A2,B2), but signal coalescences of both types occur in the same temperature range to give finally a singlet signal (AB12) at higher temperatures. The $N-p$ tolylsulphonyl derivative (8c) gives only a single AB system for the $\mathrm{C}-6$ and $\mathrm{C}-11$ methylene groups at low temperatures, which coalesces to a singlet at higher temperatures. The simplest interpretation of these

[^3]results is that the inversion process involves the ratedetermining transition states $\mathrm{FBI} \equiv \mathrm{FB} 2$ and $\mathrm{FB1}{ }^{*} \equiv \mathrm{FB} 2^{*}$ in all three cases [(16 and 17) (a and b); $\mathrm{W}=\mathrm{Z}=\mathrm{NAc}$, $\mathrm{X}=\mathrm{Y}=\mathrm{CH}_{2}$ (8a); $\mathrm{W}=\mathrm{Z}=\mathrm{NBz}, \quad \mathrm{X}=\mathrm{Y}=\mathrm{CH}_{2}$ (8b); and $\mathrm{W}=\mathrm{Z}=\mathrm{N} \cdot \mathrm{SO}_{2} \cdot \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-\mathrm{p}, \mathrm{X}=\mathrm{Y}=\mathrm{CH}_{2}$ $(8 \mathrm{c})]$. The observed free energies of activation [(8a) $\Delta G^{\ddagger} 16 \cdot 9$, (8 b) $\Delta G^{\ddagger} 14 \cdot 3$, (8 c) $\left.\Delta G^{\ddagger} 10 \cdot 1 \mathrm{kcal} \mathrm{mol}^{-1}\right]$ are significantly lower than those observed for inversion of the azocine derivatives $(7 \mathrm{a}-\mathrm{c})\left(\Delta \Delta G^{\ddagger} c a .3-4 \mathrm{kcal}\right.$ mol^{-1}) because the transannular interaction a in the FB transition state is between a ring nitrogen atom and a ring methylene group [e.g. (25)] rather than between two ring methylene groups as in (23); the interactions b and c are similar in both cases (25) and (23).

The interconversion of diastereomeric conformations is more difficult to interpret in the cases of (8a) and (8b). Thus, by analogy with the azocine derivatives (7) it seems probable that this process involves the interconversions $C^{*} \rightleftharpoons B$ and $C \rightleftharpoons B^{*}$ by way of the transition states TS2 and TS2* respectively [(19a and b), $\mathrm{W}=\mathrm{Z}=\mathrm{NAc}(8 \mathrm{a})$, or $\mathrm{W}=\mathrm{Z}=\mathrm{NBz}(8 \mathrm{~b}), \mathrm{X}=\mathrm{Y}=$ CH_{2}], but the relative free energies of activation [(8a) $\Delta G^{\ddagger} 12.9$ and (8b) $\left.\Delta G^{\ddagger} 14 \cdot 1 \mathrm{kcal} \mathrm{mol}^{-1}\right]$ are difficult to explain. Processes involving the transition states TS1, TS3, and TS4 are improbable because they involve zero or near zero torsion angles about one or both of the N-aryl bonds in a distorted eight-membered ring.

Type (iv). 5,6,11,12-Tetrahydrodibenzo[b, f$][1,5]$ diazocine derivatives ($9 \mathrm{a}-\mathrm{d}$). The C-5 and C-12 methylene groups of all these compounds give rise to two AB systems (A1,B1 and A2,B2) at low temperatures (Tables 1 and 2), but the spectrum of the dinitroso-derivative (9d) shows rather different temperature dependence from those of the other three compounds and is conveniently discussed first. One of the AB systems (A2,B2) observed in the n.m.r. spectrum of the dinitroso-compound (9d) coalesces to a singlet (AB2) well below the temperature range in which the pairs of signals AB2 and AI and AB 2 and Bl coalesce. This behaviour is consistent with the presence of a mobile conformation, probably Boat, which inverts by way of the transition states FB1 and FBI* [(16a and b), $\mathrm{W}=\mathrm{Y}=\mathrm{N} \cdot \mathrm{NO}, \mathrm{X}=\mathrm{Z}=\mathrm{CH}_{2}$] and FB2 and FB2* [(17a and b), W $=\mathrm{Y}=\mathrm{N} \cdot \mathrm{NO}$, $\mathrm{X}=\mathrm{Z}=\mathrm{CH}_{2}$]. The transition states FBl and $\mathrm{FB1}$ * are probably rate-determining since the torsion angles about both $\mathrm{Ar}^{-} \mathrm{N}$ bonds are zero, although the barriers to torsion about the $\mathrm{Ar}-\mathrm{N}$ bonds in nitrosoarylamines are generally low. ${ }^{26}$ The second conformer is presumably the Chair conformation and the free energy barrier to the interconversion, Chair \rightleftharpoons Boat, of these two diastereomeric conformations ($\Delta G^{\ddagger} 13 \cdot 8 \mathrm{kcal} \mathrm{mol}^{-1}$) by way of the enantiomeric transition states TS1三TS2 and TS1*三TS2*

[^4][(18 and 19) (a and b), $\mathrm{W}=\mathrm{Y}=\mathrm{N} \cdot \mathrm{NO}, \mathrm{X}=\mathrm{Z}=\mathrm{CH}_{2}$] is greater than that estimated (see Table 4) for the ring system lacking the nitroso-substituents because of the zero torsion angle about one of the $\mathrm{Ar}^{-} \mathrm{N}$ bonds in the transition states.

For 1,5 -diazocine derivatives of the type $(9 a-d)$, inversion of the boat conformation and the interconversion of Chair and Boat conformations necessarily involve a zero torsion angle about one or both of the $\mathrm{Ar}-\mathrm{N}$ bonds in all the possible transition states except FB2 and FB2* $[(17 \mathrm{a}$ and b$), \mathrm{W}=\mathrm{Y}=\mathrm{NAc}(9 \mathrm{a}), \mathrm{W}=\mathrm{Y}=\mathrm{NBz}(9 \mathrm{~b})$, $\mathrm{W}=\mathrm{Y}=\mathrm{N} \cdot \mathrm{SO}_{2} \cdot \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-p(9 \mathrm{c})$, and $\mathrm{W}=\mathrm{Y}=\mathrm{N} \cdot \mathrm{NO}$ (9d), $\mathrm{X}=\mathrm{Z}=\mathrm{CH}_{2}$]. It is not therefore surprising that the two diastereomeric conformations of the 1,5 -diazocine derivatives ($9 \mathrm{a}-\mathrm{c}$) are separated by large energy barriers [(9a) $\Delta G^{\ddagger} 22 \cdot 4$, (9b) $\Delta G^{\ddagger} 20 \cdot 8$, and (9c) ΔG^{\ddagger} $\left.19.6 \mathrm{kcal} \mathrm{mol}^{-1}\right]$. This is also consistent with the large energy barriers to conformational inversion presumed in the calculation of line-shapes, although not necessarily unambiguously, to involve exchange between the sites A2 and B2 [(9a) $\Delta G^{\ddagger} 21 \cdot 8$, (9b) $\Delta G^{\ddagger} 21 \cdot 1$, and (9c) ΔG^{\ddagger} $\left.18.8 \mathrm{kcal} \mathrm{mol}^{-1}\right]$. The n.m.r. spectral evidence is therefore consistent with the presence of both Chair and Boat conformational types, but signals cannot be assigned to each of these types directly. It is also not possible to determine which of the Boat conformations is the lower energy species.
Epilogue.-Our interest in the stereochemistry of ' $6,8,6$-systems ' (11) was initiated by an examination of Höhn's suggestion ${ }^{29}$ that compounds of this type could exist as conformational diastereomers of the Chair (12) and Boat (13) types. This proposal was initially put forward to account for the alleged existence of the isomeric α - and β-disalicylides (26a) ${ }^{30,31}$ and corresponding α - and β-isomers of the $o-(26 \mathrm{~b}),{ }^{32} \mathrm{~m}$ - (26c), ${ }^{32}$ and p dicresotides (26 d), ${ }^{32}$ and the α - and β-dithymotides (26 e) ${ }^{33}$ The existence of α - and β-disalicylides was given further consideration by Schönberg in 1948. ${ }^{34}$

In a pioneering paper, Baker, Banks, Lyon, and Mann ${ }^{3}$ presented a detailed discussion of the conformational behaviour which could be exhibited by $5,6,11,12-$ tetrahydrodibenzo[a,e]cyclo-octene (1,2,5,6-dibenzo-cyclo-octa-1,5-diene) (1). On the basis of X-ray crystallographic information it was shown ${ }^{3}$ that the hydrocarbon (1) adopts the centrosymmetrical chair conformation (12) in the solid state, but now it has been established that Chair and Boat conformations are approximately equally populated in solution $\left(\mathrm{CDCl}_{3}-\mathrm{CS}_{2}\right)$. This result is compatible with the approximately equal total strain energies (Table 3) calculated for the chair conformation ($E_{\mathrm{S}} 6.43 \mathrm{kcal} \mathrm{mol}^{-1}$) and the minimum energy boat conformation ($E_{\mathrm{S}} 6.69 \mathrm{kcal} \mathrm{mol}^{-1}$).

[^5]Our earlier studies ${ }^{35,36}$ disposed of the alleged existence of α - and β-disalicylides (26a-e). In all cases it was found that the α-compounds were indeed dimers (26),

whereas the β-compounds were trimers (27). These investigations ${ }^{35}$ led to the discovery of the interesting compound tri-o-thymotide ${ }^{36,37}$ (27e) and subsequently it was shown ${ }^{38}$ that the compounds ($27 \mathrm{e}-\mathrm{g}$) participate in a conformational itinerary involving diastereomeric propeller and helical conformations. Tri-o-thymotide

[^6](27e) adopts a propeller conformation in the solid state ${ }^{38}$ and the absolute configuration of its (+)-enantiomer has been established. ${ }^{39}$ Good evidence for the boat conformation ($13 ; \mathrm{W}=\mathrm{Y}=\mathrm{CO}, \mathrm{X}=\mathrm{Z}=\mathrm{O}$) of the disalicylides (26) and dithiosalicylide (28) is provided by their dipole moments : ${ }^{40}$ (26a) $6 \cdot 26$, (26b) $6 \cdot 34,(26 \mathrm{c}), 6 \cdot 74$, (26d) 6.67, (26e) 6.63, and (28) 6.39 D. ${ }^{41}$

The resonance demand for the ester group to be planar is also dominant in the lactone (29), whose dipole moment ($\mu 4.09 \mathrm{D}$) ${ }^{42}$ was also considered to be compatible with the boat conformation. Similarly, a desire for planarity in the lactams (10) would be expected to favour a boat conformation. The boat conformation (13: $\mathrm{W}=\mathrm{N} \cdot \mathrm{CH}_{2} \mathrm{Ph}, \mathrm{X}=\mathrm{CO}, \mathrm{Y}=\mathrm{Z}=\mathrm{CH}_{2}$) is chiral and the lactam (10 b) gave a temperature-dependent n.m.r. spectrum which was compatible with inversion (Boat \rightleftarrows Boat*). The N-benzylic methylene group gave an AB system ($\tau_{\mathrm{A}} 5.83$, $\tau_{\mathrm{B}} 6.32, J_{\mathrm{AB}} 14.0 \mathrm{~Hz}$) in $\left[{ }^{2} \mathrm{H}_{5}\right.$]nitrobenzene and line-shape analysis [method (b)] over the temperature range $63-170^{\circ}$ gave $\Delta G^{\ddagger}=21.4$ kcal mol ${ }^{-1}$.

The existence of enantiomers of the Boat conformation of disalicylide (26) was first mentioned in $1934,{ }^{43}$ but an attempt to effect its resolution was unsuccessful. ${ }^{31}$ However, the resolution of the cyclo-octatetraene derivative (30), which also presumably has a Boat conformation, has been achieved and its thermal racemisation ($E_{\mathrm{a}} c a .27 \mathrm{kcal} \mathrm{mol}^{-1}$) has been studied. ${ }^{44}$

The conformational changes observable for ' $\mathbf{6 , 8 , 6}$ systems' are summarised in the last column of Table 2. Their relation to Höhn's original suggestion ${ }^{29}$ is clear, although the actual situation as depicted in Figure 3 is more complicated.

We thank Professor L. Farkas (Technical University, Budapest) and the Hungarian Academy of Sciences for granting leave of absence to M.N., and the Conselho Nacional de Pesquisas, Brasil, for a research fellowship (to A.B. de O.).
[2/949 Received, 28th April, 1972]
${ }^{39}$ A. P. Downing, W. D. Ollis, I. O. Sutherland, J. Mason, and S. F. Mason, Chem. Comm., 1968, 329.
${ }^{40}$ P. G. Edgerley and L. E. Sutton, J. Chem. Soc., 1951, 1069.
${ }^{41}$ W. Baker, A. S. El-Nawawy, and W. D. Ollis, J. Chem. Soc., 1952, 3163.
${ }_{42}$ W. Baker, W. D. Ollis, and T. S. Zealley, J. Chem. Soc., 1952, 1447.

43 Beilstein, ' Handbuch der Organischen Chemie,' 4th edn., 1934, vol. 19, pp. 172, 500.
${ }^{44}$ K. Mislow and H. D. Perlmutter, J. Amer. Chem. Soc., 1962, 84, 3591.

[^0]: ${ }^{6}$ J. M. Davies and S. H. Graham, Chem. Comm., 1968, 542.
 7 A. M. Munro, R. M. Quinton, and T. I. Wrigley, J. Medicin. Chem., 1963, 6, 255.

[^1]: \dagger The methyl substituents present in the compounds (8 d and e) and ($9 \mathrm{a}-\mathrm{d}$) are omitted from this formula and the general formulae (12)-(21) for simplicity. Their presence is not generally relevant to the discussion unless specifically mentioned, although the aryl-methyl signals have in two cases, (8d) and (9d) (Table 2), been used to determine the rates of interconversion of diastereomeric conformations.

[^2]: * Note added in proof: A paper has recently been published (A. Saunders and J. M. Sprake, J.C.S. Perkin II, 1972, 1660) interpreting the conformational behaviour of the compound (8a) in terms of the four folded boat conformations (16a), (16b), (17a), and (17b). This interpretation is not compatible with the experimental evidence reported in this paper, which demonstrates for the compound (8a) that there is an interconversion involving unequally populated conformations which are diastereomerically related.

[^3]: 24 B. J. Price, J. A. Eggleston, and I. O. Sutherland, J. Chem. Soc. (B), 1967, 922.
 ${ }^{25}$ W. E. Stewart and T. H. Siddall, III, Chem. Rev., 1970, '70, 517.

[^4]: ${ }^{26}$ A. Mannschreck and H. Muensch, Tetrahedron Letters, 1968, 3227.
 ${ }_{27}$ For general reviews, see E. L. Eliel, N. L. Allinger, S. J. Angyal, and G. A. Morrison, 'Conformational Analysis,' Wiley New York, 1965, ch. 7; J. E. Williams, P. J. Stang, and P. von R. Schleyer, Ann. Rev. Phys. Chem., 1968, 19, 531.

 28 J. Dale, Tetrahedron, 1966, 22, 3373.
 ${ }^{29}$ Höhn quoted by Richter-Anschütz, 'Chemie der Kohlen-stoff-Verbindungen,' 1935 , vol. II [2], p. 393.

[^5]: ${ }^{30}$ R. Anschütz, Ber., 1919, 52, 1875; R. Anschütz and K. Reipenkroger, Annalen, 1924, 439, 1; L. Anschütz and R. Neher, J. prakt. Chem., 1941, 159, 264; L. Anschütz and A. Mayer, ibid., p. 343 .
 ${ }^{31}$ L. Anschütz and R. Neher, Ber., 1944, 7 7\%, 634.
 ${ }^{32}$ L. Anschütz and G. Gross, Ber., 1944, 77, 644.
 ${ }_{34}^{33}$ R. Spallino and G. Provenzal, Gazzetta, 1909, 39, II, 325.
 34 A. Schönberg, J. Chem. Soc., 1948, 891.

[^6]: ${ }^{35}$ W. Baker, W. D. Ollis, and T. S. Zealley, J. Chem. Soc., 1951, 201; W. Baker, B. Gilbert, W. D. Ollis, and T. S. Zealley, ibid., 1951, 209; W. Baker, J. B. Harborne, A. J. Price, and A. Rutt, ibid., 1954, 2042.
 ${ }_{36}$ W. Baker, B. Gilbert, and W. D. Ollis, J. Chem. Soc., 1952, 1443.
 ${ }_{37}$ H. M. Powell, Nature, 1952, 170, 155; A. C. D. Newman and H. M. Powell, J. Chem. Soc., 1952, 3747; D. Lawton and H. M. Powell, ibid., 1958, 2339.
 ${ }_{38}$ A. P. Downing, W. D. Ollis, and I. O. Sutherland, J. Chem. Soc. (B), 1970, 24.

